Bienvenidos a COPRESA, Concreto Preesforzado Salvadoreño, empresa 100% Salvadoreño, PIONERA Y LÍDER EN LA FABRICACIÓN DE ENTREPISOS DE CONCRETO PREESFORZADO DESDE 1972.

Durante 40 años hemos diseñado, fabricado y comercializado Sistemas de Entrepisos, con la más alta calidad. Nuestro compromiso es garantizar las múltiples y excelentes cualidades que reúnen la diversidad de **SISTEMAS DE ENTREPISO COPRESA:** Losa Tradicional, Losa Tradicional Plus (nuevo sistema), Losa Estructural, Losa Vigueta Alma Llena, Losa con Molde Metálico, Losa Losalithe y Losa con Loseta.

A través de este catálogo de productos, nuestros clientes, distribuidores y público general, podrán descubrir el interés de nuestra empresa por modernizar continuamente nuestros diseños y variedad de productos, así como también, nuestras instalaciones de fabricación y sistemas de comercialización.

Usted podrá encontrar las especificaciones técnicas y criterios más importantes a considerar en el diseño y elaboración de presupuestos para proyectos de construcción.

COPRESA, ofrece a sus clientes, la opción de venta únicamente de productos, en el caso de que el cliente quiera desarrollar directamente la instalación, o si lo prefiere, nuestro equipo de profesionales en instalación está totalmente disponible para ocuparse de su proyecto con la rapidez de montaje requerida.

Para garantizar la satisfacción absoluta de nuestros clientes, lo invitamos a conocer las razones para preferir COPRESA, menor tiempo de ejecución de obra, capacidad técnica, reducción de costos, tecnología avanzada, alta calidad, facilidad de transporte y los valores humanos e institucionales que la componen.

Copresa, S.A. de C.V.

EXPERIENCIA • INNOVACIÓN • COMPROMISO

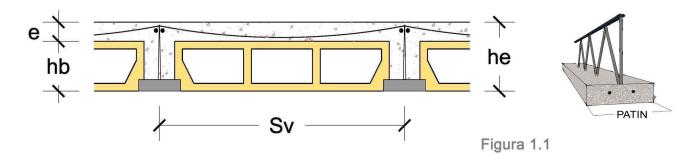
ÍNDICE

1. ¿QUÉ ES CONCRETO PREESFORZADO?	01
2. SISTEMA LOSA COPRESA TRADICIONAL	02
3. SISTEMA LOSA COPRESA TRADICIONAL PLUS	14
4. SISTEMA LOSA COPRESA LOSALITHE	16
5. SISTEMA LOSA COPRESA CON MOLDES METÁLICOS	18
6. SISTEMA LOSA COPRESA ESTRUCTURAL	21
7. SISTEMA LOSA COPRESA ALMA LLENA	24
8. SISTEMA LOSA COPRESA CON LOSETAS	27
9. PLACAS PRETENSADAS COPRESA	30
10. PROYECTOS	34

¿QUÉ ES **CONCRETO REFORZADO?**

Concreto Preesforzado indica un concreto al cual se la aplica previamente un esfuerzo de compresión para contrarrestar los esfuerzos de tensión producidos por el peso propio y por las sobrecargas a las que se encuentra sometido. De esta compresión se desprende el nombre utilizado en algunos países: "Concreto Pre-Comprimido". Esta Pre compresión puede aplicarse mediante Pretensado o Postensado.

Concreto Pretensado: Esta técnica consiste en tensar alambres de acero de alta resistencia y verter concreto alrededor de los mismos; este concreto tomará la forma del molde que encierra los alambres y será la futura pieza comprimida por el acero cuando éste se libere de sus anclajes extremos y trate de regresar a su longitud original, lo que será impedido por la adherencia entre concreto y acero.


Bajo la técnica del concreto Pretensado, se fabrican las VIGUETAS COPRESA, las que combinadas con otros agregados, constituyen el SISTEMA DE LOSAS Y ENTREPISOS COPRESA. Estas viguetas poseen un reducido peso, lo cual permite un ahorro considerable en los costos de transporte y manejo; este último generalmente se hace en forma manual y por lo tanto no requiere ningún equipo o recomendación especial. Su diseño original permite que la vigueta se pueda levantar por el centro sin ningún temor al agrietamiento.

La idea básica de COPRESA es proporcionar una losa muy resistente a costos mucho más bajos que cualquier otro sistema. Básicamente esta resistencia está representada por una serie de vigas "T", que se forman con la vigueta y el concreto colado posteriormente. Esta vigueta puede tener varias formas y peraltes, dependiendo estas principalmente de su longitud y sobrecarga a que estará sometida la losa terminada.

Como material de relleno se utiliza bovedilla de concreto PREFASA, cuya producción a gran escala asegura abastecimiento para cubrir cualquier cantidad requerida. El material ofrece la ventaja de poder recortarse cuando por motivos de modulación no se puede colocar la bovedilla entera.

Es así como están formados los SISTEMAS DE ENTREPISOS COPRESA

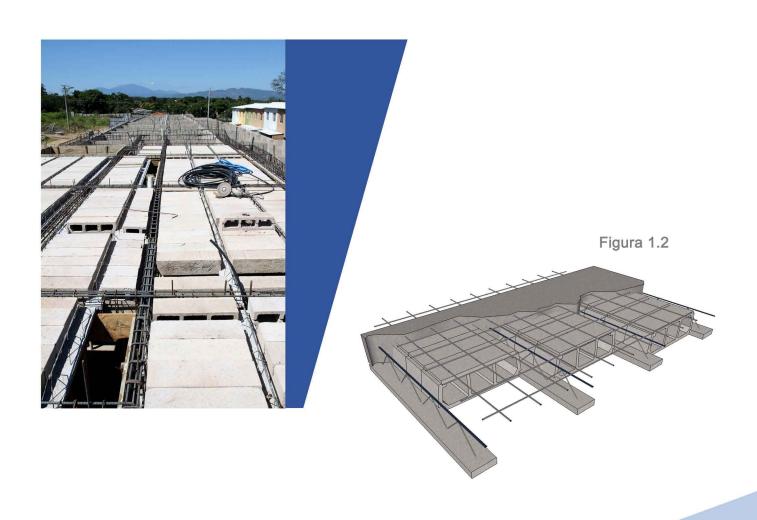
Este Sistema de Losa se ha usado con excelentes resultados desde 1973 siendo los primeros edificios en utilizarlos el Mercado Central, Hotel Alameda, Torre Roble, en los cuales estas losas, bajo la acción de los sismos de 1986 y 2001 no sufrieron ningún daño, así como también se puede constatar con todas las demás construcciones en San Salvador que usaron este sistema de entrepiso.

Sv = Separación entre viguetas

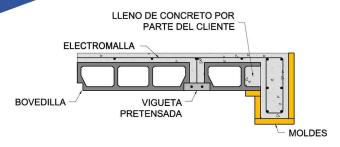
hb = Altura de Bovedilla

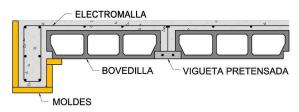
he = Altura de entrepiso o losa

e = Espesor de losa colada en sitio

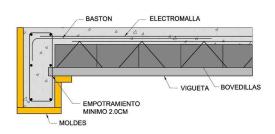

Tabla de Datos 1.1: Dimensiones de Sistema Tradicional

TIPO LOSA	he (cm)	hb (cm)	e (cm)	Sv (cm)	Patín	Peso Vigueta (Kg/mt)
VT1 - 15	15	10	5	70	14	14.3
VT1 - 20	20	15	5	70	14	14.8
VT1 - 25	25	20	5	70	14	15.4
VT2 - 25	25	20	5	70	14	15.4
VT1 - 27	27	20	7	73	17	19
VT1 - 40	40	35	5	73	17	19.3

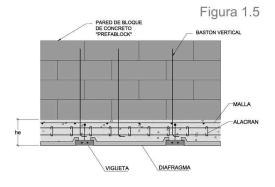

Tabla de Datos 1.2: Material utilizado en Losa Copresa Tradicional


MATERIALES	VT1-15	VT1-20	VT1-25	VT2-25	VT1-27	VT1-40
Concreto m3/m2	0.058	0.066	0.073	0.073	0.097	0.105
Acero Temp. No 2 lb/m2	4.50	4.50	4.50	4.50	4.50	4.50
Bovedillas unidad / m2	7.2	7.2	7.2	7.2	7.2	7.2
Peso de Losa Kg / m2	238	260	297	297	351	495
Puntales: Cantidad para luz Máxima	2	3	3	3	4	4
Luz Máxima p/ 400 Kg/m2	4.4	5.2	5.8	6	7	8

Nota: Luces > de 4.00 mts requieren un diafragma central


DETALLES CONSTRUCTIVOS

DETALLE BOVEDILLA RECORTADA


Figura 1.3

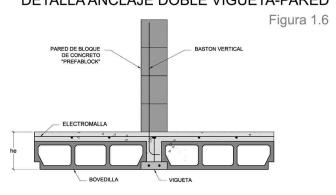

DETALLE COLOCACIÓN BOVEDILLA

Figura 1.4 ASTON VERTICAL ELECTROMALLA

DETALLE COLOCACIÓN DE VIGUETA

DETALLA ANCLAJE DOBLE VIGUETA-PARED

DETALLE ANCLAJE DIAFRAGMA - PARED

DETALLE ANCLAJE VIGUETA - PARED

Figura 1.8

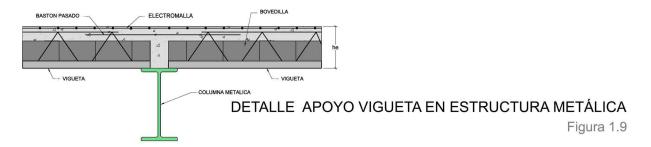
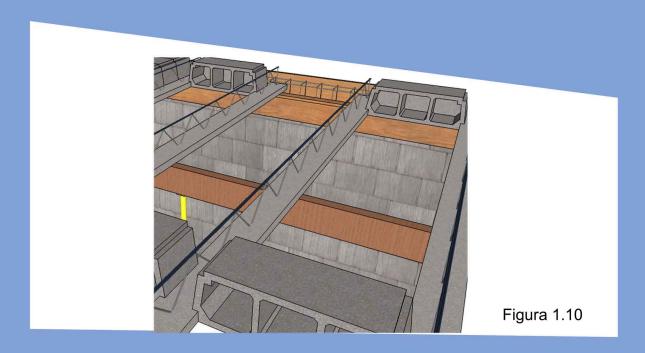


Figura 1.7

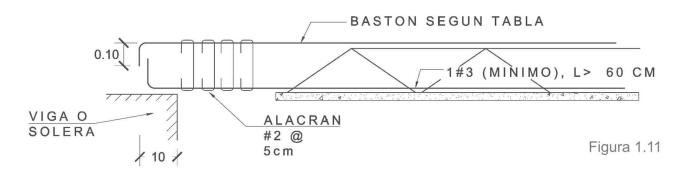
Tabla de Cargas 1.3

Luz			TIPO DE V	IGUETA				
Libre	VT1-15	VT1 -20	VT1-25	VT2- 25	VT1 -27	VT1 -40		
(mts)	Carga Viva Máxima Admisible (Kg / m2)							
2	1272							
2.2	1115	1656	2094					
2.4	989	1468	1847					
2.6	884	1314	1647					
2.8	796	1185	1482					
3	721	1077	1343					
3.2	657	983	1225	1411				
3.4	601	903	1123	1296				
3.6	551	832	1034	1196				
3.8	507	770	956	1108				
4	468	714	887	1030				
4.2	433	665	825	961	1002			
4.4	401	620	770	899	935			
4.6		580	720	842	874			
4.8		543	675	768	820			
5		496	633	688	770			
5.2		437	596	617	724	1139		
5.4			544	554	683	1065		
5.6			489	497	644	997		
5.8			438	447	608	934		
6				401	576	877		
6.2					545	823		
6.4					516	774		
6.6					490	728		
6.8					465	685		
7					423	644		
7.2						607		
7.4						571		
7.6						538		
7.8						506		
8						477		


PROCEDIMIENTO CONSTRUCTIVO CON LOSA COPRESA TRADICIONAL

A) TRANSPORTE:

Trasladar las viguetas sobre una cama de madera y con durmientes entre los diferentes tendidos para no astillar o agrietar el patín de concreto

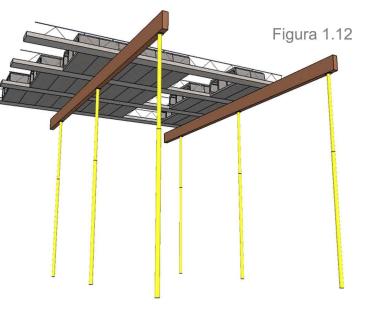

B) COLOCACIÓN:

Repartir las viguetas usando preferentemente como escantillón una bovedilla, apoyándolas un mínimo de 2.0 cms y un máximo solo limitado por la economía, el refuerzo de la solera o viga, o la preferencia personal.

Si la vigueta quedara corta, por cualquier motivo, pero menor de 20 cms respecto a la luz libre, se puede utilizar repartiendo la luz sobrante y colocando sobre el patín de concreto un refuerzo mínimo de un bastón de igual diámetro al del refuerzo superior de la vigueta. Este bastón deberá tener una longitud mínima de 60 diámetros

Entre los bastones superiores y el inferior se colocarán alacranes No 2 a cada 5.0 cms, desde el rostro de la viga o solera hasta el borde de la vigueta, como se muestra en la figura 1.12.

C) APUNTALAMIENTO:


Apuntalar las viguetas según se indica en la Tabla de Datos 1.2. Los puntales pueden ser de madera o metálicos, los cuales deberán colocarse antes de instalar las bovedillas. Si se usan durmientes horizontales entre puntales aquellos tendrán el nivel del fondo de la vigueta más baja, para cuando carguen las viguetas con las bovedillas y el concreto, estas lleguen al mismo nivel.

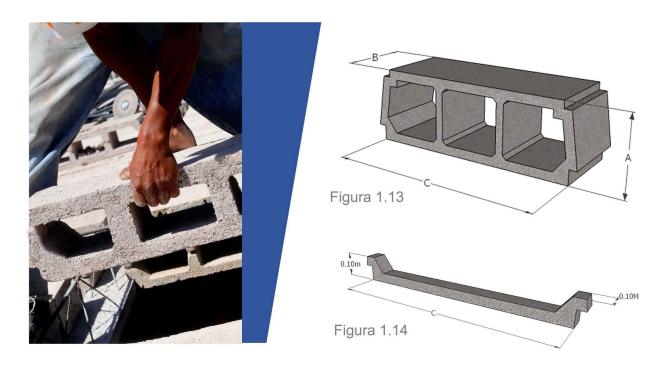
Loseta L – 4/25 apuntalar a cada 1.50 mts y dejando durmiente a nivel de loseta más baja.

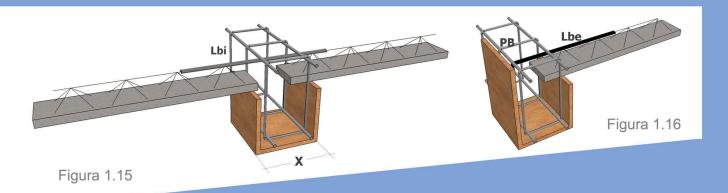
Loseta L – 8/25

No necesita ningún tipo de apuntalamiento.

D) BOVEDILLAS:

Las bovedillas son elementos aligerantes, cuya función es la de colocarse entre las viguetas como cimbra y son parte integral de la losa. Existen diversos tamaños de bovedillas para dar los peraltes y modulaciones requeridas para diseño, según se muestra en la tabla siguiente:




Tabla 1.4: Tipo de Bovedilla Losa Copresa Tradicional

Bovedilla		DIMENSIONES	PESO		
Sistema	А	В	С	Kg	Lbs
VT1 - 15	10	20	60	11.35	29
VT1 - 20	15	20	60	15.45	34
VT1 - 25	20	20	60	17.25	38
VT1 -40	35	20	60	29.5	65

Estas bovedillas también se fabrican con tapón, para así evitar que cuando se cuele la solera, vigas o diafragma central, el concreto se introduzca en los huecos.

E) BASTONES:

Para el cálculo de los bastones de refuerzo requeridos en los extremos de las viguetas para darles el empotramiento calculado, se pueden armar según las indicaciones de la tabla 1.5 En el caso de apoyo extremo dejar la pata del bastón entre los refuerzos de la viga o solera.

Lv = Longitud de vigueta

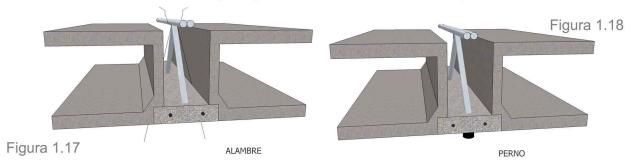
Lbe = Longitud del bastón de empotramiento en apoyo exterior

pb = Pata del bastón de empotramiento

Lbi = Longitud del bastón de empotramiento en apoyo interior

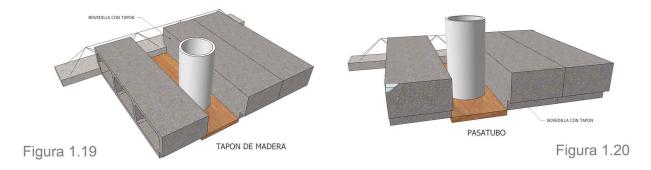
X = Ancho de viga

Tabla de Datos 1.5: Longitud de Bastones


Tipo de Losa	Bastones	SOLUCION ARMADA			
	Cant/ Diámetro	Lbe (cms)	pb (cms)	Lbi (cms)	
VT1 –15	2 / No 3		15		
VT1 -20	2 / No 3		15		
VT1 -25	2 / No 3	Tu / E	15	Lbe1 + Lbe2	
VT2 -25	2 / No 3	Lv / 5	15	+ X	
VT1 –27	2 / No 4		20		
VT1 – 40	2 / No 5		20		

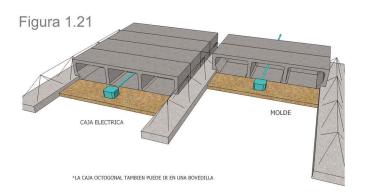
F)CIELO FALSO:

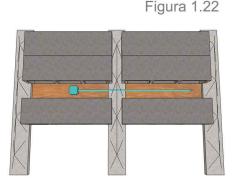
Cuando se requiera dejar cielo falso, se pueden dejar mechas de alambre galvanizado que rodeen el patín o el refuerzo superior de la vigueta para colgar de esas mechas la retícula que soporta las losetas de cielo falso


También se puede colocar anclas disparables o taladradas en el patín de la vigueta, teniendo el cuidado de hacerlo al centro del patín para no dañar los alambres del pretensado.

G) AGUA POTABLE Y DRENAJES:

Cuando se necesite pasar a través de la losa tuberías de agua potable y/o drenajes, esto no representa ningún problema en este tipo de losas, y basta dejar un pasatubo de mayor diámetro (¼ de pulgada) antes del colado para fácilmente colocar posteriormente la tubería definitiva.


En los cuartos de baño donde usualmente no es posible dejar una bajada para cada drenaje (ducha, inodoro, lavamanos, etc.), conviene levantar el enladrillado o cualquier otro tipo de acabado, mediante un relleno con piedra pómez o grava volcánica (cascajo), para asi alojar las cajas que reciben varios drenajes y permiten una sola bajada común.



Como se ven en las Figuras 1.20 y 1.21 basta separar dos bovedillas, moldear entre 2 viguetas y colocar dos bovedillas con sus tapones (vienen de fábrica), para alojar el pasatubo.

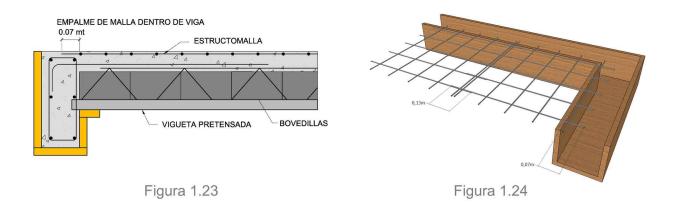
H) INSTALACIONES ELÉCTRICAS:

Tampoco esto representa un problema, pues basta llegar por la solera o viga de apoyo de las viguetas hasta la bovedilla que alojara la luz y correr el poliducto encima de la bovedilla o a través del hueco central (preferentemente) para dejar la caja donde posteriormente se fijará el receptáculo para la lámpara o foco. Ver figura 1.21 y 1.22

La caja se puede fijar ya sea moldeando o colocando una pieza diafragma entre dos viguetas, la cual se puede perforar para dar paso a dicha caja como se muestra en la Figura 1.21.

Si por algún motivo no fuera posible encontrar una línea de bovedilla donde pasar el poliducto, por venir la acometida sobre la pared perpendicular, se puede colocar tantos diafragmas como se requiera para llegar a la posición deseada, según muestra la Figura 1.22.

Este diafragma no necesita reforzarse y si se usa la solución moldeada, se puede reducir su ancho al mínimo que permita la caja eléctrica.


Loseta L- 4/25, Como aquí no tenemos bovedillas o diafragmas, donde llevar los poliductos, hay que llevarlos en el sentido longitudinal de la loseta, nunca transversal, para no debilitar la losa de recubrimiento. Igual que con los drenajes se puede solicitar las losetas que llevaran embebidas cajas para lámparas y asi dejarlas colocadas en el momento de la fabricación.

Loseta L - 8/25, Como en este sistema no hay losa colada, la única manera de alojar los poliductos es en el grueso de la mezcla para asentamiento del enladrillado. Como esta base es solo de relleno, no estructural, los poliductos pueden ubicarse en cualquier dirección. Si se requiere dejar lámparas se puede solicitar la ubicación de las cajas eléctricas en las losetas al momento de su fabricación.

I) COLADO LOSA SUPERIOR:

Colocar la malla de refuerzo según indica en la Figura 1.23, cuidando que los extremos de las varillas se empalmen 0.07 cms, dentro de la viga o solera perimetral.

También se puede ocupar malla electrosoldada para reducir el tiempo del armado y también se puede utilizar fibra de polipropileno en la dosificación de 1.0 Kg / m3 para sustituir la malla de refuerzo, lo cual tiene la ventaja técnica de obtener un refuerzo uniformemente repartido, mejorando además la resistencia a la abrasión y al impacto.

Supervisar que al momento del colado no se apile concreto en un lugar como centro de distribución, pues esta sobrecarga podría hacer fallar al apuntalamiento o la vigueta entre los puntales.

Pasadas 72 horas después del colado se puede despuntalar pero no sobrecargar, si se requiere acopiar material para los pisos superiores, dejar el apuntalamiento donde este se necesite durante un mínimo de 7 días.

J) CURADO DE LA LOSA:

Puede hacerse de 3 maneras: Por inmersión, Recubriendo con arena húmeda o Recubriendo con película selladora

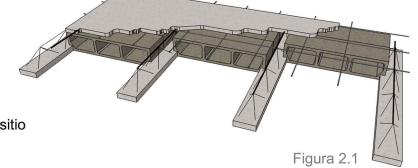
En las primeras dos alternativas, dejar por lo menos una semana, la tercera solo requiere evitar no dañar el sello.

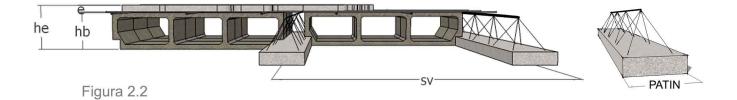
Loseta L- 4/25, Aplican las recomendaciones que se establecieron en Sistemas de vigueta y bovedilla

Loseta L - 8/25, no aplica por ser un sistema terminado.

TRADICIONAL PLUS 2

El entrepiso COPRESA PLUS, es un sistema moderno y eficiente, utilizado en la construcción de grandes edificios, centros comerciales y viviendas, elaborado a partir de elementos livianos de alta resistencia como son las viguetas pretensadas (elemento de soporte) y bovedillas (elemento de relleno). Es un sistema más liviano que el sistema tradicional, pero tiene la ventaja de una mayor resistencia a la torsión por su celosía en "V" que arriostra perfectamente la varilla superior y reduce la posibilidad de pandeo de la misma en caso de falla del apuntalamiento.


Donde:


Sv = Separación entre viguetas

hb = Altura de Bovedilla

he = Altura de entrepiso o losa

e = Espesor de losa colada en sitio

Tabla de Datos 2.1 Tipo de Viguetas: Valores de diseño

TIPO LOSA	he (cm)	hb (cm)	e (cm)	Sv (cm)	Peso Vigueta (Kg/mt)
VTP – 15	15	10	5	70	12.1
VTP - 20	20	15	5	70	12.7
VTP - 25	25	20	5	70	12.8

Tabla de Datos No 2.2: Material utilizado en Sistema Copresa Plus

MATERIALES	VP –15	VP - 20	VP – 25
Concreto (m3/m2)	0.058	0.066	0.073
Acero Temp. No 2 (lb/m2)	4.5	4.5	4.5
Bovedillas (unidad / m2)	7.2	7.2	7.2
Peso de Losa (Kg/m2)	238	260	297
Luz Máxima: p / 400 Kg/m2	4.4	5.6	6.6

Nota:

Cuando la relación Luz/espesor de losa sea mayor de 25; se colocaran diafragmas cuya separación máxima será de 2 m y el refuerzo será 2#3 y alacranes #2 @ 15

Tabla de Cargas 2.3

	VTP1-15	VTP2-15	VTP3-15	VTP1-20	VTP1-25
LUZ (m)	Wmin	Wmin	Wmin	Wmin	Wmin
	(kg/m2)	(kg/m2)	(kg/m2)	(kg/m2)	(kg/m2)
2.00	1339	1431	1431	1876	2936
2.20	1085	1259	1259	1642	2560
2.40	892	1120	1120	1454	2264
2.60	741	1005	1005	1301	2024
2.80	622	909	909	1173	1825
3.00	525	826	826	1065	1659
3.20	446	748	755	972	1517
3.40	381	639	694	892	1395
3.60	326	548	639	821	1288
3.80	280	471	591	759	1195
4.00	238	406	548	704	1112
4.20		349	510	655	1038
4.40			468	610	971
4.60				570	911
4.80				534	857
5.00				500	808
5.20				470	762
5.40				442	704
5.60				416	643
5.80					588
6.00					538
6.20					494
6.40					453
6.60					416
6.80					382
7.00					351

BASTONES

Los bastones de empotramiento elástico de las viguetas son :

VTP1-15: 1 Bastón de varilla #4 VTP2-15: 1 Bastón de varilla #4 VTP3-15: 1 Bastón de varilla #5 VTP1-20: 1 Bastón de varilla #4 VTP1-25: 2 Bastones de varilla #4

PROCESO CONSTRUCTIVO SISTEMA COPRESA PLUS

Se emplea el mismo procedimiento que el del Sistema de Losa Tradicional.

El entrepiso LOSALITHE, es un sistema moderno y eficiente , utilizado en la construcción de grandes edificios , centros comerciales y viviendas, elaborado a partir de elementos livianos, de alta resistencia como son las viguetas pretensadas (elemento de soporte) y bovedillas (elemento de relleno). Es un sistema de alta flexibilidad, seguro y adaptable a cualquier situación constructiva.

Donde:

Sv = Separación entre viguetas

hb = Altura de Bovedilla

he = Altura de entrepiso o losa

e = Espesor de losa colada en sitio

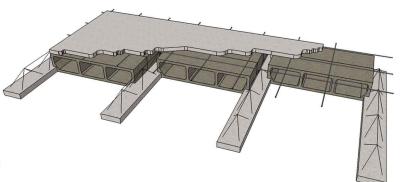
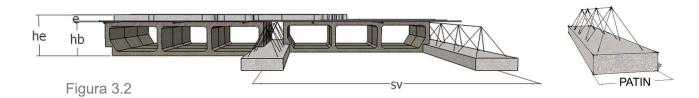



Figura 3.1

Tabla de Datos 3.1 Tipo de Viguetas: Valores de diseño

TIPO LOSA	he (cm)	hb (cm)	e (cm)	Sv (cm)	Patín (cm)	Peso Vigueta (Kg / mt)
VTL – 15	15	10	5	70	14	14.3
VTL - 20	20	15	5	70	14	14.8
VTL-25	25	20	5	70	14	15.4

Tabla de Datos No 3.2: Material utilizado en Sistema Losalithe

MATERIALES	VTL –15	VTL - 20	VTL – 25
Concreto (m3/m2)	0.058	0.066	0.073
Acero Temp. No 2 (lb/m2)	4.5	4.5	4.5
Bovedillas (unidad / m2)	7.2	7.2	7.2
Peso de Losa (Kg/m2)	238	260	297
Puntales: Cantidad para luz Máxima	2	3	3
Luz Máxima: p / 400 Kg/m2	4	5.2	5.8

Nota:

Luces > de 4.00 mts requieren un diafragma central reforzado con un refuerzo de 2 varillas de 3/8" con alacrán de 1/4 "@ 15 cms.

Tabla de Cargas 2.3

	TIPO DE VIGUETA					
	VTL - 15	VTL - 20	VTL - 25			
(IIIIs)	Car	ga Viva Máxima Admi (Kg / m2)	isible			
2	1260					
2.2	1106					
2.4	982	1252				
2.6	879	1117				
2.8	792	1005	1192			
3	718	909	1075			
3.2	655	828	975			
3.4	563	757	889			
3.6	480	695	814			
3.8	410	629	749			
4	351	545	690			
4.2		472	638			
4.4		355	559			
4.6		307	488			
4.8			426			
5			371			
5.2			323			

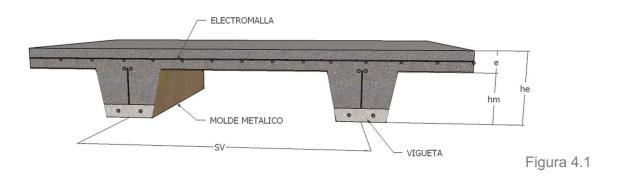
Nota:

El Sistema VTL - 20, se puede utilizar hasta luces de 5.20 colocando 2 bastones No 4 (½ ") en extremo de vigueta.

El sistema VTL – 25, se puede utilizar hasta luces de 5.20 colocando 2 bastones No 4 ($\frac{1}{2}$ ") en extremo de vigueta.

PROCESO CONSTRUCTIVO SISTEMA COPRESA LOSALITHE

Se emplea el mismo procedimiento que el del Sistema de Losa Tradicional.


CON MOLDES METALICOS | 4

Este sistema de losas tiene dos ventajas principales respecto a los otros sistemas: Bajo peso y bajo precio

Bajo peso por la eliminación del uso de bovedilla de concreto que reduce el peso muerto en aproximadamente 120 Kg / m2 y bajo precio por el mismo ahorro de la bovedilla.

Tabla de Datos 4.1 Tipo de Viguetas: Valores de Diseño

TIPO LOSA	he (cm)	hm (cm)	e (cm)	Sv (cm)	Patín (cm)	Peso (Kg/ml)
VM - 20	20	15	5	70	14	14.6
VM - 25	25	20	5	70	14	15.2

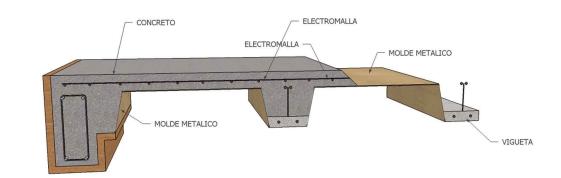
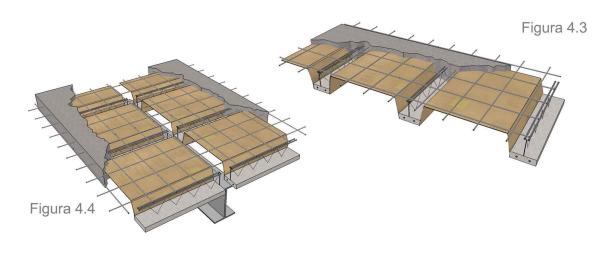


Figura 4.2

SISTEMA LOSA COPRESA CON MOLDES METÁLICOS


Tabla de datos 4.2: Material utilizado en losa Copresa Tradicional

MATERIALES	VM1 –20	VM2 -20	VM1 - 25	VM2 -25
Concreto m3/m2	0.075	0.075	0.085	0.085
Acero Temp. No 2 lb/m2	4.5	4.5	4.5	4.5
Peso de Losa Kg/m2	193	193	222	222
Puntales : Cantidad		Según medio	la de moldes	
Luz Máxima p/ 400 Kg/m2	4	5	6.8	7

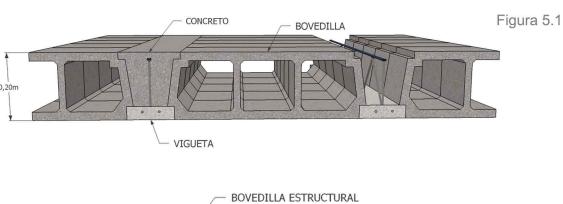
PROCEDIMIENTO CONSTRUCTIVO SISTEMA CON MOLDE METÁLICO

Aunque normalmente esta losa se vende instalada, el procedimiento constructivo es igual a los otros sistemas, únicamente tomar en cuenta lo siguiente:

- Cuando por motivos de modulación es imposible terminar con molde metálico, se colocará bovedilla de concreto para complementar el área de la losa.
- En las uniones entre molde-molde, molde-vigueta y molde-viga algunas veces quedan imperfecciones al desenmoldar, las cuales deberán ser resanadas posteriormente.
- En el apuntalamiento los durmientes que sostienen las viguetas se colocan en las uniones de molde-molde.
- En las instalaciones eléctricas se debe llevar el poliducto sobre el molde en el sentido paralelo a las viguetas, se debe evitar hacerlo en sentido perpendicular pues eso debilitaría el patín de compresión de la vigueta.

Tabla de cargas 4.3

Luz	ΠΡΟ DE VIGUETA					
Libre (mts)	VM-15	VM1-20	VM2 -20	VM1 -25	VM2- 25	
(III.5)	Carga Viva Máxima Admisible (Kg / m2)					
2.00	1529	2241				
2.20	1285	1824	2011			
2.40	1058	1507	1794			
2.60	881	1261	1616			
2.80	741	1065	1468			
3.00	626	907	1343			
3.20	530	778	1236	1560		
3.40	451	671	1132	1440		
3.60	384	581	993	1335		
3.80	327	505	875	1243		
4.00		441	774	1162		
4.20			687	1089	1204	
4.40			612	1024	1133	
4.60			546	965	1069	
4.80			487	912	1011	
5.00			433	863	958	
5.20				811	910	
5.40				739	865	
5.60				675	824	
5.80				617	786	
6.00				564	751	
6.20				528	718	
6.40				484	688	
6.60				445	659	
6.80				408	633	
7.00					605	



SISTEMA LOSA COPRESA | 5

La Losa Copresa Estructural, está en uso desde 1988, ha demostrado su facilidad constructiva, economía y poco peso, lo que ha permitido ser la solución favorita cuando la luz no sobrepasa los 7.0 mts y no hay sobrecargas mayores de 400 Kg /m2.

Como lo muestra la figura 5.1, la ausencia de losa superior permite una reducción de peso de aproximadamente 120 Kg/m2, lo que a su vez puede conducir a ahorros adicionales en el diseño de vigas columnas y fundaciones, aparte del ahorro en concreto y malla de refuerzo de la losa misma.

La falta de la losa de recubrimiento como diafragma horizontal de amarre entre los elementos portantes verticales bajo la acción sísmica, es suplida fácilmente mediante diafragmas espaciados a un máximo de 1.50 mts, los cuales se forman usando la pieza diafragma como molde perdido y como se muestra en la Figura 5.2.

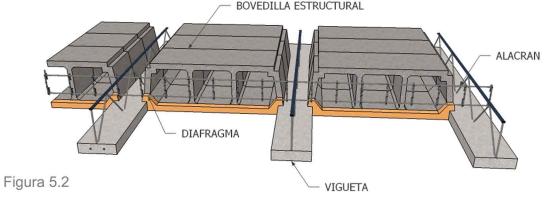


Tabla de Datos 5.1: Material utilizado en Losa Copresa Estructural

TIPO LOSA	Concreto m3 / m2	Bovedillas No / m2	Peso losa Kg/m2	Luz Máx mts	Cantidad puntales
VE1 -20	0.31	7.2	216	3.4	2
VE2 - 20	0.31	7.2	216	4.4	2
VE3 - 20	0.31	7.2	216	5.2	3

Tabla 5.2: Tipo de Bovedilla Losa Copresa Estructural

BOVEDILLA	Dimer	asiones (cms)		Peso	
	A	В	С	Kg	Lbs
1	20	20	60		

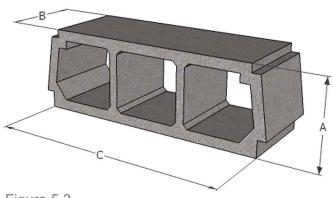


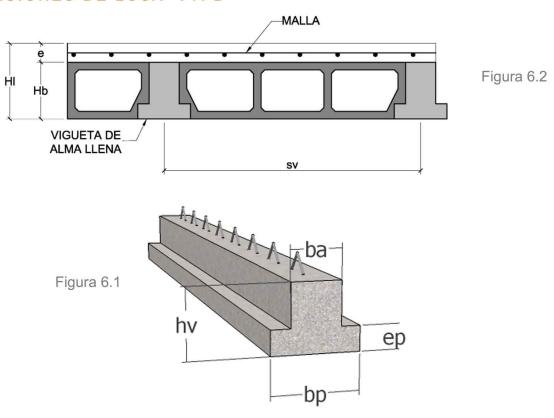
Figura 5.3

PROCEDIMIENTO CONSTRUCTIVO CON LOSA COPRESA ESTRUCTURAL

Se emplea el mismo procedimiento que la Losa Tradicional con la única variante, que debido a la falta de losa de recubrimiento (toping de concreto) como diafragma horizontal de amarre entre los elementos portantes verticales bajo la acción sísmica, es suplida fácilmente mediante la colocación de diafragmas espaciados a un máximo de 1.50 mts, los cuales se forman usando la pieza diafragma como molde perdido y como se muestra en la Figura 5.2.

Tabla de Cargas 5.3

Luz		Tipo de Vigueta	
Libre (mts)	VE1-20	VE2 -20	VE3 -20
(mis)	Carç	ga Viva Máxima Admi (Kg / m2)	sible
2	1255		
2.2	1024		
2.4	849	1624	
2.6	713	1447	
2.8	604	1220	
3	517	1038	
3.2	445	888	1114
3.4	386	764	1028
3.6		661	954
3.8		573	867
4		498	764
4.2		433	674
4.4		377	597
4.6			530
4.8			470
5			418
5.2			372


VIGUETA ALMA LLENA 6

Este sistema es similar al tradicional con la diferencia que utiliza una vigueta "T" de concreto de alta resistencia comprimida mediante cables pretensados, teniendo únicamente en los extremos una celosía que sirve para aumentar la resistencia al cortante y además sirve para fijar los bastones de empotramiento.

VENTAJAS:

- A) El peso de la vigueta permite su manejo manual.
- B) Para luces menores de 3.00 mts no se requiere utilizar puntal.
- C) Los detalles de drenajes, electricidad, etc., son iguales al Sistema Tradicional.

DIMENSIONES DE LOSA VTPB

PROCEDIMIENTO CONSTRUCTIVO CON LOSA VIGUETA ALMA LLENA

Se emplea el mismo procedimiento que la Losa Tradicional con la única variante a tomar en cuenta que por tener vigueta alma llena no será posible colocar diafragmas perpendiculares a la vigueta cuando se requiera.

Tabla de Datos 6.1: Material Utilizado para Presupuestar

Partida	Unidad	VTPB - 15	VTPB – 20
Concreto	m3 / m2	0.053	0.056
Bovedillas	unid/m2	7.14	7.14
Viguetas	ml / m2	1.4	1.4
Acero Temperatura	lb / m2	4.5	4.5
Peso de losa	kg / m2	250	300
Puntales Cantidad	u / m2	2	3
Luz máxima P / 400 Kg / m2	Mts	4	5.6

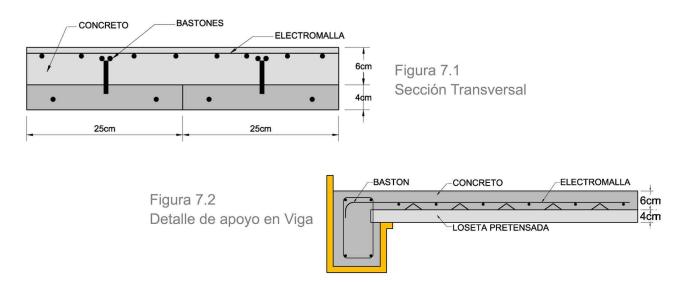
Tabla de Datos 6.2 Tipo de Viguetas: Valores de Diseño

Elemento	Clave	Unidad	VTPB 15	VTPB 20
Altura de losa	HI	cms	15	20
Altura de bovedilla	Hb	cms	10	15
Altura de vigueta	hv	cms	10	15
Ancho de patín	bp	cms	14	14
Ancho de alma	ba	cms	6	6
Espesor de patín	ер	cms	4	4
Espesor de losa	е	cms	5	5
Separación entre viguetas	Sv	cms	70	70

SISTEMA LOSA COPRESA VIGUETA ALMA LLENA

Tabla de cargas 6.3

Luz	TIPO DE	LOSETA
Libre	VALL-15	VALL-20
(mts)	Carga Viva Máx	
	(Kg /	
2.00	1305	1540
2.20	1172	1374
2.40	1064	1240
2.60	936	1130
2.80	803	1037
3.00	697	957
3.20	609	889
3.40	537	829
3.60	476	777
3.80	314	731
4.00	172	690
4.20		653
4.40		619
4.60		589
4.80		561
5.00		487
5.20		372
5.40		269
5.60		178



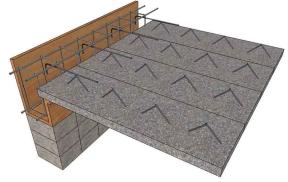
Nota: Luces menor de 3.00 mts no se requiere el uso de punta

SISTEMA LOSA COPRESA 7

LOSETAS L - 4 / 25

Este sistema de losas, como muestran las Figuras No 1 y No 2, no requieren bovedillas, pues las losetas se instalan una a la par de la otra, hasta cubrir el ancho requerido con módulos de 25.0 cms.

En los casos que la modulación no permita que se termine exactamente con una loseta, se coloca un tapón de madera o metálico en la terminación reforzándolo con un alacrán para luego proceder al respectivo colado, este sistema lleva un toping de concreto de 6.0 cms sobre las losetas.



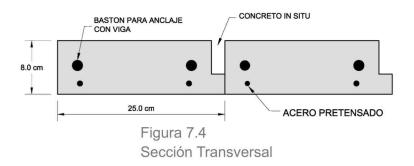

Figura 7.3 Isométrico de Sistema

Tabla de Cargas 7.1

Luz	TIPO DE LOSETA			
Libre (mts)	L1 – 4/25	L2 - 4/25		
(1113)	Carga Viva Máxima	Admisible (Kg / m2)		
2.00	2207			
2.20	1808			
2.40	1504			
2.60	1268			
2.80	1081			
3.00	930	1524		
3.20	806	1328		
3.40	703	1166		
3.60	618	1030		
3.80	545	915		
4.00	483	817		
4.20		732		
4.40		659		
4.60		595		
4.80		539		
5.00		490		
5.20		446		

LOSETAS L - 8 / 25

Como se muestra en las Figuras siguientes este Sistema viene casi terminado, faltando solamente el relleno de concreto fino o mortero cargado en los canales que forman en la unión entre loseta – loseta, que permiten el sellar la junta entre losetas.

No requiere ningún tipo de apuntalamiento y para que soporte la carga de diseño, solamente se requiere que la solera o viga de apoyo donde se alojan los bastones, que ya vienen incorporados de fábrica tengan un mínimo de 7 días de colado. La superficie vista de la loseta trae de fábrica un acabado liso.

Tabla de Cargas 7.2

Luz	TIPO DE LOSETA			
Libre (mts)	L1 - 8/25	L2 - 8/25		
()	Carga Viva Máxima	Admisible (Kg / m2)		
2.00	2078.00			
2.20	1665.00			
2.40	1351.00			
2.60	1106.00			
2.80	912.00			
3.00	755.00	1431.00		
3.20	627.00	1221.00		
3.40	521.00	1047.00		
3.60	432.00	901.00		

PLACAS PRETENSADAS | 8

Las placas pretensadas Copresa, representan la Mejor Alternativa del Mercado para la Construcción de Losas Densas, pues explotan las altas características del concreto precomprimido con la flexibilidad del concreto reforzado.

La figura 8.1, presenta las secciones típicas de estas placas, con los llenos de concreto en sitio que permiten conseguir peraltes de losas desde 10 cms, hasta el espesor que la solución estructural demande.

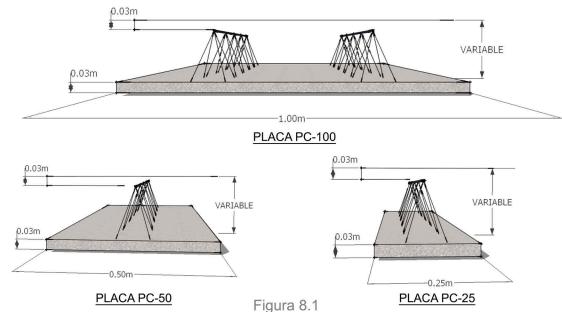
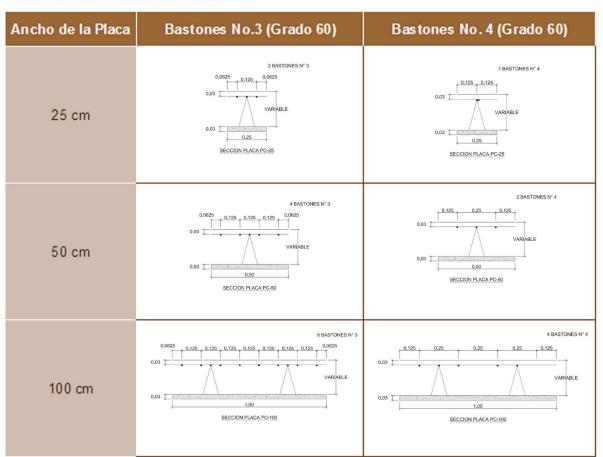


Tabla No 8.1 Material Utilizado en Placa Copresa

Espesor de Losa (cms)	Concreto (m³/m²)	Malla Refuerzo (Lb/m²)	As (cm²/mt lineal)	Electromalia	Fibra Polipropileno
10.00	0.07	3.60	1.00	6X6 - 8/8	0.07
15.00	0.12	6.20	1.71	6X6 - 4.5/4.5	0.12
20.00	0.17	8.80	2.42	6X6 - 3/3	0.17
25.00	0.22	11.40	3.13	Varilla No. 3 @22.0 cms en ambos sentidos	0.22

PROCEDIMIENTO CONSTRUCTIVO


Se emplea el mismo procedimiento que la Losa Tradicional con la única variante:

a) Apuntalamiento: Es requerido un apuntalamiento provisional con separación máxima de 1.50 mts. los puntales pueden ser de madera o metálicos, los cuales deberán colocarse antes de instalar las placas, para soportar el peso del concreto fresco y el tránsito de personas durante el colado Normalmente no bastarán 7 días para poder cargar estas losas sin ningún apuntalamiento.

b) Drenajes y Electricidad: La colocación de drenajes se facilitar al proporcionar la ubicación de las bajadas y dejar en la placa prefabricada pasatubos del diámetro necesario.

c) Bastones: Los bastones de refuerzo en los apoyos se colocan al lado de la varilla superior de la placa y entre ellas, o saliendo de la armaduria de la viga o solera de apoyo respetando el nivel de la varilla de la placa. Ver tabla 8.2

Tabla No 8.2 Detalle de bastones

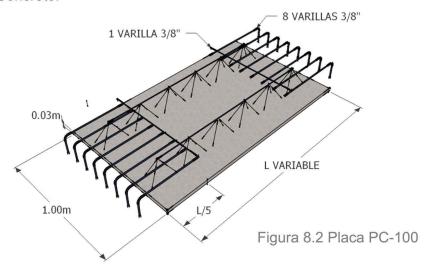

d) Colado de losa superior: Colocar la malla de refuerzo por temperatura, cuidando que los extremos de las varillas se empalmen 7 cms dentro de la viga o solera perimetral.

Tabla 8.3 Topping de Concreto sobre Placa

Espesor de Losa (cms)	10.00	15.00	20.00	25.00
Topping	0.07	0.12	0.17	0.22

No se debe permitir la acumulación de concreto durante de concreto durante el colado que sobrecargue peligrosamente las placas y el apuntalamiento.

e) Curado de Losa: Curar la losa por inmersión o cubrir con capa de arena húmeda durante 7 días como mínimo o también sellar mediantes película que evite la evaporación del agua contenida en el Concreto.

Carga Viva Máxima Admisible (Kg/M²)

Las cargas presentada en la siguiente tabla, son las sobrecargas netas, muertas y vivas, que pueden colocarse sobre la losa terminada. El peso propio ya fue descontado. Se han ensayado losas simplemente apoyadas, resistiendo cargas bastante superiores a las mínimas mostradas en las tablas y con flecha casi imperceptibles a simple vista.

Tabla de cargas 8.4

Luz Libre (mts)	Carga Máxima Admisible (Kg/m²)				
1.00	14718				
1.20	10066				
1.40	47261				
1.60	5440				
1.80	4192				
2.00	3299	5922			
2.20	2638	4831			
2.40	2136	4001			
2.60	1745	3355			
2.80	1434	2842			
3.00	1184	2429	3443		
3.20	979	2090	2970		
3.40	809	1810	2578		
3.60	667	1575	2250		
3.80	547	1376	1972		
4.00	444	1206	1735	2264	
4.20		1060	1531	2002	
4.40		933	1354	1774	
4.60		822	1199	1576	
4.80		725	1064	1402	
5.00		640	944	1249	
5.20			838	1113	
5.40			744	991	
5.60			659	883	
5.80			583	785	
6.00			515	697	
6.20				618	
6.40				546	
6.60				480	
6.80				420	
7.00				365	

COPRESA nació como empresa en Noviembre de 1972, pero su inicio de operaciones fue hasta en 1973 con el suministro de viguetas para el mercado central de San Salvador.

El primer edificio con el sistema de losas COPRESA fué el Hotel Alameda sobre la alameda Roosevelt y el primer gran edificio fue la Torre Roble, edificio emblemático de San Salvador situado en el centro comercial más grande del país: MetroCentro.

Este edificio fue inaugurado en 1974 y en Octubre de 1986 sufrió uno de los más fuertes sismos ocurridos en el país , sin embargo la calidad de las losas COPRESA fue evidenciada al no presentar fisuras como lo presentaron las losa densas construidas en el primer y último nivel.

Esto podemos asegurarlo por haber participado en la reparación y reforzamiento de las estructuras de este edificio que soportó bastante bien las solicitaciones sísmicas del mencionado terremoto y del sismo del 2001.

EXPERIENCIA • INNOVACIÓN • COMPROMISO

TORRE ROBLE

HOSPITAL Y PARQUEO NUESTRA SEÑORA DE LA PAZ



COPRESA